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ABSTRACT 

We study the Reggeon calculus when Reggeons have a(O) > 1 and 

vacuum quantum numbers . We sum all the Regge cuts in the weak 

coupling regime where the p Reggeon couplings r are small. The 
P 

resulting amplitude saturates the Froissart bound provided the triple 

Regge coupling r 3 is dominant. In impact parameter space the ampli- 

tude is a uniform absorbing disk whose radius expands like fns . The 

leading asymptotic term factorizes even when there are arbitrary 

couplings of the external particles to many Reggeons. In the angular 

momentum plane the Pomeron is a pair of cuts on the trajectories 

gt) = 1 * 2.L cu’(a-l)& 
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I. INTRODUCTION 

Recent attempts to understand constant or rising cross sections 

at very high energy show that both the high energy (s) channel and the 

crossed (t) channels must be carefully treated. In a Regge picture, 

s channel unitarity leads to strong constraints on the Regge parameters, 
1 

and t channel processes in which the Reggeon splits into other Reggeons 

are crucial for the understanding of cuts, L and of the couplings that 

appear in inclusive cross section formulas. 
I 

Most models shortchange 

at least one of the aspects of the problem. The result is that they have 

falling cross sections, or they violate unitarity, or they give absurd 

formulas for inclusive cross sections in the fragmentation region. In 

this paper we examine the Reggeon calculus, which emphasizes Reggeon 

splitting. This type of model is apt to have trouble with unitarity, but 

in the proper regime we find that s channel unitarity is preserved 

together with rising cross sections. In our calculations we shall not 

“force” the Reggeon calculus in any way, but rather evaluate the 

Reggeon diagrams and take what comes. Since our Reggeons are chosen 

to have 40) >i, it is close to miraculous that the sum of diagrams just 

saturates the Froissart bound. 

The Reggeon calculus is abstracted from field theory, and in a 

full calculation the Regge parameters would be determined in terms of 

masses and couplings of the underlying field theory. If the Regge 
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parameters are related as the field theory specifies, we expect s channel 

unitarity to be satisfied. When the field theory is adjusted so that the 

Reggeons have 40) - 1 3 A < 0, s channel unitarity in fact says very 

little, and the various Regge couplings can be chosen arbitrarily, 

disregarding the relations specified by the field theory. The main point 

we shall establish in this paper is that, subject to very simple constraints, 

the Regge parameters can also be chosen arbitrarily for A > 0, despite 

the fact that each individual Regge cut badly violates unitarity. It is 

surprising that the constraints we find should be simple because delicate 

cancellations are required for the sum of the cuts to satisfy the Froissart 

bound. The sum of the cuts has the further attractive feature that its 

form is both simple and independent of the specific field theory used to 

derive the Reggeon calculus. Contrary to initial expectations, the 

underlying field theory can be discarded for A > 0, just as it can for 

A < 0. Gell-Mann has compared this process to a method employed 

in French cuisine: a piece of pheasant meat is cooked between two slabs 

of veal, which are then discarded. 
3 

In this paper we only investigate the asymptotic behavior of four 

particle amplitudes. It remains to be seen whether the requirements 

imposed by s channel unitarity on inclusive processes are trivially 

satisfied for A > 0. If they are, the Reggeon calculus constitutes a 

model which is soundly based dynamically, puts all t channels on the 

same footing, and satisfies s channel unitarity besides. This is an 
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attractive possibility for the following reason: We know that cuts must 

play a dominant role in inclusive processes if cross sections do not fall 

with energy. ‘However, an inclusive amplitude with dominant cuts cannot 

be parametrized uniquely, so a model is required even for data fitting. 

The final Regge singularity we find for A > O--hereafter called the 

Pomeranchon--is an uniform absorbing disk in impact parameter space 

whose radius grows like y = !ns. Our Pomeranchon differs from that 

of the Regge-eikonal model4 because it is gray rather than black, and 

because cross sections obey factorization relations rather than approaching 

a common value. The Regge-eikonal black disk can be obtained by 

choosing special values of the Regge couplings in our model. 

A theory with a vacuum Regge pole at A > 0 has a chance of being 

unitary only if all the attendant Regge cuts are summed. We shall con- 

sider a Regge pole on the linear trajectory a(t) = ~(0) + cult. This pole, 

together withits cuts, leads to the multiple scattering series for the 

amplitude 

M(s) t) = : (-y)-n+iCn(t, y 
-i~sncu(0)+o’t/n-n+l . 

(1.1) 
n=l 

The factor y -n+l IS predicted by Reggeon unitarity to be the leading 

behavior of the n-Reggeon cut, and the alternating signs appear in all 

models based on Feynman diagrams with even signature poles near 

A= 0. Equation (1. 1) is a useful asymptotic series only for A < 0, but 

if it can be summed, the sum can be evaluated for A > 0. One then 
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obtains the scattering amplitude for A 7 0 provided--as we assume-- 

that no Stokes pheonomenon occurs at A = 0. In other words, we assume 

that the sum of terms that are subordinant for A< 0 remains subordinate 

for A>O. The Regge-eikonal model is an example of a model where the 

Regge cuts can be summed and then continued to A 2 0 in this manner: 

the result is the black disk Pomeranchon. The chief defect of the 

Regge-eikonal model is that it ignores processes in which Reggeons 

split into several Reggeons. These are precisely the processes emphasized 

in the Reggeon calculus. 

We shall calculate C,(t.y 
-1 

) in the Reggeon calculus for A > 0. 

To do so exactly we should have to calculate all diagrams, which is 

conceivable only for A = 0. We are therefore forced to calculate in 

the weak coupling approximation, where unrenormalized p Reggeon 

vertices r are all small constants. 
P 

We calculate the Regge cuts to 

lowest order in products of these constants. A typical diagram in the 

weak coupling class is shown in Fig. 1, where the dashed line indicates 

the discontinuity taken in the angular momentum plane, and $ is the 

coupling of p Reggeons to external particles. The weak coupling class 

of diagrams has the property that the dashed line separates the diagram 

into two trees. We also require that rp is of the same order of 

smallness as (rJP -’ so that diagrams with different kinds of 

couplings are of comparable strength. 

Some approximations must be made to evaluate our diagrams. When 
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calculating the discontinuity across Regge cuts, we take the expression 

near the threshold of each cut and regard it as adequate down to the next 

cut to the left. Since the cut to the left has a discontinuity with lower 

powers of the r’s, the accuracy of the discontinuity matters only in this 

interval. This approximation is tantamount to replacing the C,(t, y-l) 

by their asymptotic values C,(t, 0). We recognize there is no guarantee 

that the sum of the corrections, each suppressed by powers of y -l, is 

subordinant to the sum we calculate. The approximation is an inevitable 

one in weak coupling approximations: The asymptotic behavior of the 

perturbation sum is assumed to be the sum of the asymptotic behaviors 

of the terms. 

A second approximation is to ignore the t-dependence of the pro- 

pagators in the tree production amplitudes of Fig. 1. As we shall see in 

Sec. II, this approximation is adequate for -A << ru’t < 0. Since the 

t-variation of s @‘t/n be comes more rapid as s increases, this approxi- 

mation is harmless at high energies. This second approximation replaces 

C, (t, 0) by C,(O, 0) in Eq. (1-U). 

In Sec. II we begin the calculation by assuming only P, and one of the 

rp are nonzero. We find an absorbing disk Pomerachon satisfying unitarity 

for p = 3, but for p 14 the Froissart bound is violated. In Sec.111 we explore 

the domain in the space of coupling constants where unitarity is satisfied by 

considering the case where ‘3 and ‘4 are nonzero. We find that unitarity is 

2 
satisfied when W E 2Ar4/3r3 lies in the interval - m< W < I/ 4 This suggests 
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that unitarity is satisfied if the higher couplings are small compared with 

r3’ 
or if they have the right sign. In Sec. IV we turn on all the pp’s 

but take r 
P 

=OforpZ4. There we show that the leading asymptotic 

behavior factorizes even when there are direct couplings of particles to 

many Reggeons. 

II. SUMMATION OF CUTS WITH pi AND ONE rp NONZERO 

Our first task is to count Reggeon production diagrams like those 

on one side of Fig. 1. We shall use Rayleigh-Schrodinger perturbation 

theory, so graphs which differ by order of emission of the Reggeons are 

distinct. One Reggeon is emitted by p,, and each time rp acts p-2 

additional Reggeons appear. When rp occurs n times, the intermediate 

state has n(p-2) + 1 Reggeons. We denote the number of such production 

amplitudes on one side by Np(n),which satisfies the recursion relation 

N (n) = (n-l)! [n(p-21+11! 
P (p-l )! 

5 *.. nfj 6b-itpfj ni) 
ni =0 p-1=o i=i 

(2.1) 

P-i N (n.) 
Xl-f n.! [ j=i J nj(p-2) + 11 . ,: Np(W=i . 

This recursion relation is illustrated in Fig. 3, and the various terms 

can be understood as follows. The Kronecker delta requires the final 

number of Reggeons to be n(p-2) + 1, and the summations allow branch i 

to have any number of vertices ni. The factor [n(p-2)+i1!~n:[nj(p-21ti]! 
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is the number of ways the produced Reggeons, which are labelled, can 

be allocated to the branches. The factor (n-l)! is the number of orders 

in which vertices subsequent to the first can occur, and the factors 
P-1 

1/ n nj! are required because Np(nj) already counts the number of orders 
j =1 

of vertices within the j -th branch. The factor l/ (p-l )‘. appears because 

diagrams differing by a reindexing of the branches are not distinct. 

Np(n) is obtained from Eq. (2. 1) by introducing the generating 

function 

(2.2) 

Equation (2.1) may be written 

where the circuit encloses the origin but none of the singularities of 

fp(Z). Multiply this equation by Xn-’ and sum on n from 1 to m. 

f;(X) = 1 .-& 
(p-l)! 2rn +$- l$(zPi = & [fp(x)lp-f 

(2.4) 

The solution of this differential equation gives 

Np(n) = '-' [ 1 n [(p-Z)n+ll!F[n+l/(p-2)l 
(p-f )I r+[l/(p-2)l (2.5) 

The cut discontinuity shown in Fig. 1 can be evaluated using rules 

given in Ref. 2. When the discontinuity across the m-Reggeon cut is 

taken, we encounter a phase space integral 
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(2r)‘6(;- Es’.) 6l.j -1 - E (A - a8Gi2)] 
i-4 l i=i 

m-l 
m-l 

,g (ma -j +1 - aIt/m)(mA-j +i -cutt/m)m-2.(2.6) 
(4lTcu’ ) m! 

The theta function determines the threshold of the m-Reggeon cut to be 

‘2 
j = 1 t; mA + o’t/m; at threshold each ti = -qi = t/m’* In the production 

amplitudes eachReggeon has angular momentum cu(ti ). An intermediate 

state with c Reggeons produces an energy denominator [ (j-i) - k (A-;n’ti::l -I* 
i=i 

At the tip of the [ (p-2)n + 11 Reggeon cut, j-1 = [(p-2)n+21A+avt/ [(p-Z)n+il , 
C 

and - c a’t. 5 -@It. Thus each energy denominator is bounded by 
j -1 J 

(j-1) - 5 (A+ 
i=l 

ruVi) )-’ 

> [(p-Z)n+l -CIA- a’t +aV/[(p-2)n+i) 

After q Reggeon emissions have occurred, c = [ (p-2)q + 11 . If 

-A <<aft CO, as we assume, the denominator is very close to 

[ (p-2)(n-q)Al -i. The product of all energy denominators in each 

production amplitude is therefore (p- 2)-n A-“(,! ) 
-1 

. 

We have all elements required to write the sum of the cuts. 
5 

(2.7) 

m 
lrn M(s,,t) = &Af$B S'+A+Q't '-' + 

r2 [ iI (p-2)1 J djsj 
-m 

m 
XC 

r~;(~~/,(~l-2)l Q.$(~-~)A +A -j + 1 + clt/[n(p-2) + iI> 
n=l * 
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x(nlp-2)A+A-j +1 +cr’t/[n(p-2)~ll)n’p-2)-i 

2 

x An. 

f [ (p-t)!l 2A2(-41rru’) P-2 I 
(2.8) 

In the n-th term let 

r 2s.(p-2) 

ZF P 

[(p-l)!] a (-411cY’y)p-2 . 2 2 (2.9) 

Then 

TT A B I+A+a’t 
ImM(s,t) = zP, P, s 

+ zpA B B (~-2)s’+~ 
21 1 

r2[ 1/(p-2)l 

(2.10) 
m 

I 
dXe 

-x m sa’t/[n(p-2)+11 2 
X -E x 

I- [n + I/(p-7.)) Cxp-2z)n 
n!(n-I)! 

0 n=l 

At t=O the sum is a hypergeometric function,for which we use the Mellin- 

Barnes integral. Interchanging order of integrations and evaluating 

the X-integral we find 

in A p l+A ImM(s,O)=~PiB,s 

-++im (2.14 ) 

1 
J- 

dX 
xzrri r(x+2) 

r2t\+i+ ’ 
-f-im 

~)r[(p-2)(~+1)lr(-\)(-Z)\: 
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The first two terms in the large Z expansion of the Mellin-Barnes 

integral are given by the simple pole at X = -1 and, for p 2 4, by the 

triple pole at A = -f-1/ (p-2). The contribution of8 the pole at X= -1. 

cancels the single Reggeon exchange term, leaving the asymptotic 

expression 1 - 

Im M(s, O)-rr$p~sy3Az(~-2) 
t 

[(p-l)!] 2A2 

(-1 p 
(2.12) 

The total cross sections predicted by Eq. (2.121~ are real only when p 

is odd; even then they violate the Froissart bound by one power of y. 

For p=3, the triple pole is reduced to a double pole. We find the 

asymptotic behavior 

Im M(s, O)- 
8n2A3a’ A B 2 

2 P, PISY a 

r3 

The corresponding cross sections have the energy dependence of the 

Froissart bound. The next lower power in the cross section is the term 

slSAy3, so in this calculation the parameter A is directly related to 

subasymptotic powers in total cross sections. A similar phenomenon 

occurs in the Regge-eikonal model. 

The constraint of unitarity can be explored further, for p=3, by 

examining the s-channel partial-wave amplitude in the impact parameter 

formulation. 
0 

Imf(s,b) = $ 
I 

dt JO(bn)Im M(s,t) . (2.14) 

-aI 
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Inserting Eq. (2. 10) and summing on n, 

dXe 
-x 

-bL/4cu’y 
(2.15) 

Xr,2sAe 

Imf(s, b) is positive for elastic scattering and decreases monotonically 

to zero as b increases. Thus, if (p,j2 is not too large, the unitarity 

bound on elastic amplitudes, 0 5 Imf(s, b) 5 1, is satisfied. For large 

s, the brace in Eq. (2.15) becomes nearly a theta functionf?(2yvx -b) 

with a radius proportional to y. The radius is related to (Y’ and A in the 

same way in the Regge-eikonal model. The width of the edge of the disk 

remains finite as s - a. This factorizing, uniformly absorbing Pomeronanchon 

disk is described in the t-channel as a pair of trajectories 

Q*(t) = 1 f 2GxG. (2.16) 

III. SUMMATION OF CUTS WITH pi, r3 AND r4 NONZERO 

In Sec. II we summed Reggeon cuts to obtain an unitary amplitude, 

but only for p=3. In general, all r 
P 

‘S will be finite, and then we need 

to know the domain in the space of coupling constants where unitarity is 

satisfied. In this Section we study a simple section of this domain by 

taking r3 and r to be finite. 
4 

We show that the amplitude is unitary if 

r3 is the dominant coupling, or if r is negative. 
4 

When one of these 

conditions is satisfied, the amplitude resembles Eqs. (2.13) and (2. 15). 
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We begin by counting the number of Reggeon production diagrams 

in which n+l Reggeons are produced, with all vertices triple Regge 

vertices except the last, which is a four Regge vertex. The number of 

such diagrams is 

N,(n) = N3(n-2) (n-2), 3, (n+‘)! = +n N3(n), 
. . (3.1) 

where the combinatorial factor counts the number of ways of allocating 

the Reggeons to the vertices. 

Next we count the number of diagrams in which nl+l labelled 

Reggeons are increased to n+l labelled Reggeons by means of emissions 

at triple Regge vertices. The number of such diagrams, Np(ni, n), satisfies 

N3hi) (n :i)!Npbl’n) = N3(n) * (3.2) 
1 

Combining N and N 
P’ 

we calculate the number of diagrams leading to 
(Y 

n+l Reggeons, with just one four Reggeon vertex acting before the 

intermediate state with ni + 1 Reggeons. This is 

N 3 4(n;ni) = N (n ) ’ N (n ,n) (Y 1 (ni+l!! p 1 

(3.3) 

= &N 
1 3 

(n). 

Continuing in this way, we determine the number of diagrams with n+l 

final Reggeons, and with four Regge vertices before intermediate states 

with ni+l, n2+1, . . . Reggeons. 

N 
3,4 

(n;nl. n2, . . . (3.4) 
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The values of diagrams with four Regge vertices at locations nl, 

n2, . . . are simple modifications of the result in Sec. III. A multiplicative 

factor r4/r32 occurs due to the replacement of two triple Regge vertices 

by one four Regge vertex. Also, the energy denominator r (n+l -ni)Al 
-1 

is omitted. Equation (2.10) becomes 

m 

A B 
ImM(s,t) =:pipls 

i+A+cz’t 

0 
(3. 51 

xc m f ,9P2 m C C(n,qi)C(n,q2)ns ait/(n+l)(xz)n, 

qi=O q2=O 
n=max(i, 2qij 2q21 

Here Wz 2 Ar4/ 3r 
2 

3 
is finite in the weak coupling limit, and 

n+l -n 
n -2 

C(n,s) = fJ - 5 
n+i -n 

q-i 
n2-2 

n+i -n 

n c I; (3.6) 
n =2q 

9 
% n =2(q-1) 

q 
q-i ‘** nl=2 nl 

C(n,O)=i . 

The sums in C(n, q) distribute q four Regge vertices in the production 

amplitudes in all possible ways. Integrate Eq. (3. 5) by parts. The 

single Reggeon exchange term can be absorbed into the sum, and we have 

m 
TI A B l+A 

Im Mb, 0) = TP, P, s J dXe -x F(XZ, W), 

0 
2 2AB m (3.7) 

Imf(s,b) = 
87~ A P,P, 

2 f-Z’) J dXe -XXF(XZ’, W) , 

r3 0 
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where Z’ = e -b2/4c,‘yz and 

F(Z, W) = 5 f wqi+92 m 
C C(n, qt )C(n, q2)Zn. (3.8) 

ql=o q2=o n=2 max(qt, q2) 

To study F, we first generalize C(n, q) to C(n, m, q). 

n -2 

C(n,m,q) = E 
n+i -n 

3 

n+l -n q-l 
n2-2 

n+l -n 
9 . . . c 1, 

n -2q “1 
q 

nq nqel=2(q-4) “q-l 
“I=2 

(3.9) 

C(n,m,O) = 1 . 

Thus, C(n,n,q) = C(n,q). The new coefficients satisfy the recursion 

relation 

C(n,m,q) = C(n,m+d,q) - s C(n,m-l,q-4). (3. 10) 

Introduce the generating function 

G(n, Z, W) = E 5 C(n,m,q)ZmWq. 
q-0 m=Zq 

(3.11) 

Equation (3. 10) implies that G satisfies the differential equation and 

boundary condition 

(i-z+wz2) 2 - az [(n-1)W.Z + II} G(n,Z, W) = 0, (3.12) 

G(n, 0, WI = 1 . 

The solution is 

G(n, Z, WJ = [A(Z, W)l n+i [ B(Z, W)] n-*, (3.13) 

where 
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1 

[ 

(1 +%Tm - zwz)(i-m) 1 
2m 

A(Z, W) = (1 - m - 2wz)(i+?,jJ (3.14) 

B(Z, W) = (1-Z+WZ2)- . :. 

To get closer to F, consider the second generating function 

03 0) 

m z" a" G(Z,W) = c c C(n,n,q)ZnWq = c z - 
q=O n=2q n=O BZl” 

Gh Z’, WI z, =. 
I 

(3.15) 

[A(Z’, W)B(Z’, W)ln . 

Z’ =o 

The sum may be evaluated by means of Lagrange’s theorem. 6 

G(Z,W = & 3 (3.16) 

where 4 (Z) is the unique solution of the functional equation 

4(Z) = ZA( 4(Z), W)B(~J(Z), W) (3.17) 

satisfying the boundary condition o(O) = 0. The function we want is 

related to G(Z, W) by 

FfZ, W) = & F WE-z, WG($ W), 

where the contour runs inside the singularities of G(cZ, W) and outside 

the singularities of G( g, W). 

To use Eqs. (3.16-19), we must determine the properties of 

4(Z). For this purpose, consider the inverse function 

Z($)=A. A($, W)B(b, W) (3.19) 
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We immediately note that Z( 4) is infinite when A or B vanishes, i. e., 

Therefore, on every sheet b(Z) must approach one of $+ as Z - 00. 

Z( I$ ) possesses an analytic inverse 4 (Z) except where Z( 6 ) is singular, 

or where 

dZ -= i-3$)(1-$) 
d4 $(1-c$+w$2) 

(3.21) 

vanishes. Possible singular values of $I are thus d = 1, I$ f or m. The 

corresponding possible singular points of I$ (Z) can be gotten from 

Eq. (3.19); depending on W they are Z = Zo; 0 or a; Z1. 

z. = 
1 

A(1, W)B(1, W) ’ ‘1 = Ai 
Z 

A(Z, WMZ, WI ’ 
(3. 22) 

The formulas for Z. and Zt are multivalued, and any branch can bea 

singular point on some sheet of 6 (Z). According to Lagrange’s theorem, 

we are interested in the sheet of 4(Z) where o(O) = 0 and o(Z) is 

analytic at Z = 0; cuts in the Z-plane are to be drawn from singular 

points to infinity. Therefore, Z = 0 is not a singular point of ~5( Z) and 

G(Z, W) on the sheet of interest here. By expanding Eq. (3.19) about 

$=a, it can be seen that 4(Z) has a simple pole at Z = Zi. According 

to Eq. (3. i6), this does not produce a singularity of G(Z, W), so the 

only finite singularities of G(Z, W) are at one or more of the branches of Zo. 

The next step is to determine which branches of Z. are singularities 

of d,(Z). The results depend on W, and we first take the case 0 < W < 4. 
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Consider the circuit in the d-plane illustrated in Fig. 4a. Equation (3.19) 

maps this into the circuit in the Z-plane shown in Fig. 4b; the circuit 

encloses the upper half Z-plane. Since the circuit in Fig. 4a can be 

continuously deformed to the origin without crossing any singularities of 

the mapping, 1 Z. 1, - / Zt [ and m are the only singularities of 6 (Z) within 

or on the edge of the upper hair’ plane. Consideration of the complex- 

conjugate to the path of Fig. 4a shows that 1 Z. ! is the only finite 

branch point of o(Z) in the cut Z-plane, and that the discontinuity of 

d(Z) across the cut drawn from 1 Z 1 to infinity is positive definite. 
0 

6(m) = $+ in the cut plane. By expanding E 
~2%&%# 

9) around 4 = p,, we 

find the discontinuity decreases like Z- 14JI-4W , at large Z. 

Equation (3.16) indicates that G(Z, W) is analytic except for a cut 

drawn from 1 Z. I to m. The discontinuity is positive definite and has 

the same asymptotic power as the discontinuity of o(Z)/ Z. We may 

therefore write the dispersion relation 
m 

G(Z, W) = $ / 
dZ’p( z’ ) 

PO/ 
Z’-z ’ p(Z) ’ 0. 

Considering asymptotic behavior, we have 

$+ 1 * -z- 
+- = - I-$+ 1T J dZ’p(Z’ ). 

lzol 

Substituting into Eq.. (3. 18) , 

F(Z,W) : + 
m dZidZ2p(zihdz2) -u 

TI lZoI 

ZlZ2 - z 

(3. 23) 

(3. 24) 

(3.25) 
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(CL- j2 
F(Z,W) - z+mo’ 

Equation (3.7) now gives the asymptotic behavior 

Im M(S, O), (3. 26) 

This amplitude is unitary and differs from Eq. (2.13) only by the last 

factor, which approaches 1 at W=O. 

It follows from Eq. (3. 25) that the imaginary part of the s-channel 

partial wave amplitude is positive and decreases monotonically to zero 

as b increases indefinitely. At high s the Pomeranchon is again an uniform 

absorbing disk: 

Im f(s, b)- 8,r2A2 
r32 PfP’: ~,-$-]6’i2y6-% - b). (3.27) 

Altogether, when W is between 0 and i/4, no significant change is seen 

in the amplitude. For W>1/4, the right side of Eq. (3. 26) is complex 

and thereby violates unitarity. 

The analysis for - m < W < 0 is more complicated, and we only 

give results. The new feature is that Q(Z) and GCZ, W) have branch points 

at 1 Z. 1 efij: 

(3. 28) 

The dispersion relation for GCZ, W) is 
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m 

G(Z, W) = ; 1 

re-i+-Z ’ 1 (3. 29) 

where R(r) > 0 and R(r) has the asymptotic behavior 

R(r) - 
r-m (-2Wr) ’ (3.30) 

We also have 

F(Z, W) = -$- dridr2 R(ri)R(r2) 

lr lzol 

(3. 31) 

1 1 

rlrZe 
2i+- z - 

rtr2e 
I -2iGez * 

With the aid of Eq. (3. 301, we find the asymptotic behavior 

U-l2 
-C t-z) - * <arg(-ZF & 1 (3.32a) 

F(Z, W) - 
(mJ2+ ($+j2 

(-22) 
+ i(l-4W)Pn(-Z) + ic 

2rrW2(-Z) C-Z) 

C sm <arg(-Zl <n 1 . (3. 32b) 

The complex conjugate to Eq. (3. 32b) holds for -TI < arg(-Z) < - J&, 

and C is an undetermined constant. It follows from Eq. (3. 32a) that 

Eqe. (3. 26 1 and (3. 27) continue to hold. However, the monotonicity of 
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Im f(s, b) can no longer be established for - m < W < 0,which means we 

cannot rule out a local excursion of Im f(s, b) below zero near the edge 

of the disk. There is no reason to believe such an excursion occurs, but 

if it does, it constitutes a violation of unitarity over a limited range of 

impact parameters. 

These results show no trace of the complex cross section which 

must appear in the limit of pure four Regge couplings. However, when 

s approaches infinity along a complex ray so that Eq. (3. 32b) holds, we 

have 

Im M(s,O) w - 
r4 

(3. 33) 

In the limit W- m this agrees with the complex cross section of Eq. (2.121. 

IV. SUMMATION OF CUTS WITH r3 AND ALL pp NONZERO 

The results of Sec. III encourage us to conjecture that when r 
3 

numerically dominates the other r 
P’ 

or possibly when the rp have the 

proper sign, an unitary amplitude typical of pure triple Regge coupling 

emerges. Here we adopt this conjecture and put all the rp (p # 3) equal 

to zero. However, we now keep all the Ppfinite. We shall see that the 

leading behavior of the forward imaginary amplitude is again sy’, with 

a factorizing residue. It is quite unexpected for there to be factorization 

in the presence of direct couplings of many Reggeons to the external 

particles. 
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We calculate the sum of cuts associated with p Reggeons coupled 

to particle A, q Reggeons coupled to particle B. and interactions among 

the Reggeons due to r3. The number of diagrams on the left leading to 

the production of n+i Peggeons is [ p! 1 -iNp!p-i, n), and the value of 

each diagram is [ An-p+i (n-p+1 )! 1 -‘. These are the only modifications 

of our previous formulas, and we obtain a contribution 

Im M 

m (4.1) 

X 
I 

dXeeX c S(Y’t’(n+i) &)! (n;q!+, )! (XZ?. 

0 n=max(p, q 1-i 

At t =0 we obtain 

Im M 

zP-i (&r-i zq-i($-’ 7 z; . 

0 

(4.2) 

Summing on p and q and taking the leading asymptotic behavior, 

Im M(s, O)-8rr A cu’sy 2r:2 

The factorization exhibited above does not hold for the term sy, which 

is down from the leading term only by y. This can be understood by 

examining the s-channel partial wave amplitude, Im f(s, b 1. Im f(s, b) is 
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very nearly a theta function of radius 2ydn and factorizing height. 

However, at the edge of the disk Im f(s, b) deviates from a perfect step 

by a contribution which does not factorize. This annulus of radius 

2ym and finite width in impact parameter makes a contribution sy 

which does not factorize. 

V. CONCLUSIONS 

It is surprising that the Reggeon calculus makes sense for A > 0. 

We have found that only weak constraints must be placed on the Regge 

couplings to enforce s channel unitarity, and that the Pomeranchon is 

then an uniform absorbing disk of factorizing height in impact parameter 

space. This Pomeranchon is similar to the Regge-eikonal Pomeranchon 

except that it is only partially absorbing. Physically, it is more difficult 

to understand a partially absorbing disk than a black disk leading to equal 

asymptotic cross sections: The latter occurs when the absorption becomes 

large regardless of how the absorption arises. More will be known about 

how our cross section is built up when multiparticle final states are 

studied. 

The multiple scattering series further emphasizes the difference 

between the Reggeon calculus model and the Regge-eikonal model. In the 

version studied in Sec. IV, the multiple scattering series for the Reggeon 

calculus model has coefficients 
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C,(O, 0) = 8f2A2 n’. (,,:,I12 )n [ ii (nrp!+il! p!zI)! 

(5.1) 

x LAP-j n 0 I[ qgl (n-“,i)! q!i>yI! T 

q-1 
r3 0 1 ’ 

The Regge-eikonal model has 

AB 
“Pi P, 

Cn(O’O) = (y( [ 1 cy’ 
2n(n!) ’ (5.2) 

In the Reggeon calculus model the multiple scattering series is not 

convergent due to n ! , although it is Bore1 summable. (The Sommerfeld- 

Watson integral is the Bore1 sum. ) The factor n! is attributable to the 

huge number of Reggeon branching diagrams, which are absent in the 

Regge-eikonal model. The sum of the cuts is unitary for arbitrary p 
P 

precisely because these splittings are present. On the other hand, the 

eikonal model has a convergent multiple scattering series. The model 

enforces unitarity by relating l3, to p, in a special way. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4a 

Fig. 4b 

FIGURE CAPTIONS 

A contribution to the five-Reggeon cut discontinuity 

in the weak coupling approximation. 

A correction to Fig. 1 which is excluded in the 

weak coupling approximation. 

Np(n) is built up as a sequence of branchings. 

Circuit in z#~ plane. Values of e at A, B, C are 

1, 4-z ++. The semicircle D has a very large 

radius. 

The mapping of Fig. 4a in the Z plane by Eq. (3. 19). 

The singularity at - 1 Z1 ) is a simple pole. 
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